Lecture 16 : Arc Length

In this section, we derive a formula for the length of a curve $y=f(x)$ on an interval $[a, b]$. We will assume that f is continuous and differentiable on the interval $[a, b]$ and we will assume that its derivative f^{\prime} is also continuous on the interval $[a, b]$. We use Riemann sums to approximate the length of the curve over the interval and then take the limit to get an integral.

We see from the picture above that

$$
L=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left|P_{i-1} P_{i}\right|
$$

Letting $\Delta x=\frac{b-a}{n}=\left|x_{i-1}-x_{i}\right|$, we get

$$
\left|P_{i-1} P_{i}\right|=\sqrt{\left(x_{i}-x_{i-1}\right)^{2}+\left(f\left(x_{i}\right)-f\left(x_{i-1}\right)\right)^{2}}=\Delta x \sqrt{1+\left[\frac{f\left(x_{i}\right)-f\left(x_{i-1}\right)}{x_{i}-x_{i-1}}\right]^{2}}
$$

Now by the mean value theorem from last semester, we have $\frac{f\left(x_{i}\right)-f\left(x_{i-1}\right)}{x_{i}-x_{i-1}}=f^{\prime}\left(x_{i}^{*}\right)$ for some x_{i}^{*} in the interval $\left[x_{i-1}, x_{i}\right]$. Therefore

$$
L=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left|P_{i-1} P_{i}\right|=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{1+\left[f^{\prime}\left(x_{i}^{*}\right)\right]^{2}} \Delta x=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

giving us

$$
L=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x \quad \text { or } L=\int_{a}^{b} \sqrt{1+\left[\frac{d y}{d x}\right]^{2}} d x
$$

Example Find the arc length of the curve $y=\frac{2 x^{3 / 2}}{3}$ from $\left(1, \frac{2}{3}\right)$ to $\left(2, \frac{4 \sqrt{2}}{3}\right)$.

Example Find the arc length of the curve $y=\frac{e^{x}+e^{-x}}{2}, \quad 0 \leq x \leq 2$.

Example Set up the integral which gives the arc length of the curve $y=e^{x}, 0 \leq x \leq 2$. Indicate how you would calculate the integral. (the full details of the calculation are included at the end of your lecture).

For a curve with equation $x=g(y)$, where $g(y)$ is continuous and has a continuous derivative on the interval $c \leq y \leq d$, we can derive a similar formula for the arc length of the curve between $y=c$ and $y=d$.

$$
L=\int_{c}^{d} \sqrt{1+\left[g^{\prime}(y)\right]^{2}} d y \text { or } L=\int_{c}^{d} \sqrt{1+\left[\frac{d x}{d y}\right]^{2}} d y
$$

Example Find the length of the curve $24 x y=y^{4}+48$ from the point $\left(\frac{4}{3}, 2\right)$ to $\left(\frac{11}{4}, 4\right)$.

We cannot always find an antiderivative for the integrand to evaluate the arc length. However, we can use Simpson's rule to estimate the arc length.
Example Use Simpson's rule with $n=10$ to estimate the length of the curve

$$
\begin{gathered}
x=y+\sqrt{y}, \quad 2 \leq y \leq 4 \\
d x / d y=1+\frac{1}{2 \sqrt{y}} \\
L=\int_{2}^{4} \sqrt{1+\left[\frac{d x}{d y}\right]^{2}} d y=\int_{2}^{4} \sqrt{1+\left[1+\frac{1}{2 \sqrt{y}}\right]^{2}} d y=\int_{2}^{4} \sqrt{2+\frac{1}{\sqrt{y}}+\frac{1}{4 y}} d y
\end{gathered}
$$

With $n=10$, Simpson's rule gives us
$L \approx S_{10}=\frac{\Delta y}{3}[g(2)+4 g(2.2)+2 g(2.4)+4 g(2.6)+2 g(2.8)+4 g(3)+2 g(3.2)+4 g(3.4)+2 g(3.6)+4 g(3.8)+g(4)]$ where $g(y)=\sqrt{2+\frac{1}{\sqrt{y}}+\frac{1}{4 y}}$ and $\Delta y=\frac{4-2}{10}$.

y_{i}	y_{0}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	y_{7}	y_{8}	y_{9}	y_{10}
y_{i}	2	2.2	2.4	2.6	2.8	3	3.2	3.4	3.6	3.8	4
$g\left(y_{i}\right)=\sqrt{2+\frac{1}{\sqrt{y}}+\frac{1}{4 y}} \approx$	1.68	1.67	1.66	1.65	1.64	1.63	1.62	1.62	1.61	1.61	1.60

We get

$$
S_{10} \approx 3.269185
$$

The distance along a curve with equation $y=f(x)$ from a fixed point $(a, f(a))$ is a function of x. It is called the arc length function and is given by

$$
s(x)=\int_{a}^{x} \sqrt{1+\left[f^{\prime}(t)\right]^{2}} d t .
$$

From the fundamental theorem of calculus, we see that $s^{\prime}(x)=\sqrt{1+\left[f^{\prime}(x)\right]^{2}}$. In the language of differentials, this translates to

$$
d s=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \quad \text { or } \quad(d s)^{2}=(d x)^{2}+(d y)^{2}
$$

Example Find the arc length function for the curve $y=\frac{2 x^{3 / 2}}{3}$ taking $P_{0}(1,3 / 2)$ as the starting point.

Worked Examples

Example Find the length of the curve $y=e^{x}, \quad 0 \leq x \leq 2$.

$$
L=\int_{0}^{2} \sqrt{1+\left[\frac{d y}{d x}\right]^{2}} d x=\int_{0}^{2} \sqrt{1+\left[e^{x}\right]^{2}} d x=\int_{0}^{2} \sqrt{1+e^{2 x}} d x
$$

Let $u=e^{x}, d u=u d x$ or $d x=d u / u . u(0)=1$ and $u(2)=e^{2}$. This gives

$$
\int_{0}^{2} \sqrt{1+e^{2 x}} d x=\int_{1}^{e^{2}} \frac{\sqrt{1+u^{2}}}{u} d u
$$

Letting $u=\tan \theta$, where $-\pi / 2 \leq \theta \leq \pi / 2$, we get $\sqrt{1+u^{2}}=\sqrt{1+\tan ^{2} \theta}=\sqrt{\sec ^{2} \theta}=\sec \theta$ and $d u=\sec ^{2} \theta d \theta$

$$
\begin{gathered}
\int_{\frac{\pi}{4}}^{\tan ^{-1}\left(e^{2}\right)} \frac{\sec \theta}{\tan \theta} \sec ^{2} \theta d \theta \\
=\int_{\frac{\pi}{4}}^{\tan ^{-1}\left(e^{2}\right)} \frac{\sec ^{3} \theta}{\tan \theta} d \theta=\int_{\frac{\pi}{4}}^{\tan ^{-1}\left(e^{2}\right)} \frac{\sec ^{3} \theta \tan \theta}{\tan ^{2} \theta} d \theta \\
=\int_{\frac{\pi}{4}}^{\tan ^{-1}\left(e^{2}\right)} \frac{\sec ^{3} \theta \tan \theta}{\sec ^{2} \theta-1} d \theta
\end{gathered}
$$

Letting $w=\sec \theta$, we have $w\left(\frac{\pi}{4}\right)=\sqrt{2}, w\left(\tan ^{-1}\left(e^{2}\right)\right)=\sqrt{1+e^{4}}$ from a triangle and $d w=\sec \theta \tan \theta$. Our integral becomes

$$
\begin{gathered}
\int_{\sqrt{2}}^{\sqrt{1+e^{4}}} \frac{w^{2}}{w^{2}-1} d w=\int_{\sqrt{2}}^{\sqrt{1+e^{4}}} 1+\frac{1}{w^{2}-1} d w=\int_{\sqrt{2}}^{\sqrt{1+e^{4}}} 1+\frac{1 / 2}{w-1}-\frac{1 / 2}{w+1} d w \\
\left.\left.=w+\frac{1}{2} \ln |w-1|-\frac{1}{2} \ln |w+1|\right]_{\sqrt{2}}^{\sqrt{1+e^{4}}}=w+\frac{1}{2} \ln \left|\frac{w-1}{w+1}\right|\right]_{\sqrt{2}}^{\sqrt{1+e^{4}}} \\
=\sqrt{1+e^{4}}-\sqrt{2}+\frac{1}{2} \ln \left|\frac{\sqrt{1+e^{4}}-1}{\sqrt{1+e^{4}}+1}\right|-\frac{1}{2}\left|\frac{\sqrt{2}-1}{\sqrt{2}+1}\right|
\end{gathered}
$$

